

Impacts of Tobacco Excise Increases on Cigarette Consumption and Government Revenues in Southeastern European Countries

Regional study

Albania, Bosnia and Herzegovina, Kosovo, Montenegro, North Macedonia, and Serbia

Disclaimer

This report is co-authored by the following research institutions: Institute of Economic Sciences, Belgrade, Serbia; University of Banja Luka, Entrepreneurship and Technology Transfer Center, Banja Luka, Bosnia and Herzegovina; Analytica, Skopje, North Macedonia; Development Solutions Associates, Tirana, Albania; Democracy Plus, Prishtina, Kosovo; The Institute of Socioeconomic Analysis, Podgorica, Montenegro. These institutions are working in cooperation with the Institute of Economic Sciences from Belgrade, which is coordinating a regional network of researchers in Southeastern Europe on tobacco taxation. The project is funded by the University of Illinois at Chicago's (UIC) Institute for Health Research and Policy to conduct economic research on tobacco taxation in Albania, Bosnia and Herzegovina, Kosovo, Montenegro, North Macedonia, and Serbia. UIC is a partner of the Bloomberg Initiative to Reduce Tobacco Use. The views expressed in this document cannot be attributed to, nor do they represent, the views of UIC, the Institute for Health Research and Policy, or Bloomberg Philanthropies.

Acknowledgments

The report is the culmination of the efforts of 18 authors, who are listed below along with the editors. We would also like to acknowledge the following individuals for their constructive reviews of the report: Frank J. Chaloupka, Ph.D.; Erika Siu, JD, LLM; and Violeta Vulović, Ph.D, from the Institute for Health Research and Policy in the University of Illinois at Chicago, Illinois, United States.

Scientific Editors

Jovan Zubović, Ph.D. Institute of Economic Sciences, Belgrade, Serbia Marko Vladisavljević, Ph.D. Institute of Economic Sciences, Belgrade, Serbia

Contributing Authors

ja Luka, Bosnia and Herzegovina

Executive Summary: Jovan Zubović, Ph.D. Institute of Economic Sciences, Belgrade, Serbia *Chapter* 1 & 2: Marko Vladisavljević, Ph.D. Institute of Economic Sciences, Belgrade, Serbia Chapter 3: Aida Gjika, Ph.D. Development Solutions Associates, Tirana, Albania Edvin Zhllima, Ph.D. Development Solutions Associates, Tirana, Albania Drini Imami, Ph.D. Development Solutions Associates, Tirana, Albania Chapter 4: Dragan Gligorić, Ph.D. Faculty of Economics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina Ljubiša Mićić, M.A. Faculty of Economics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina Dragana Preradović, M.A. Faculty of Economics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina Andela Pepić, M.A. Entrepreneurship and Technology Transfer Center, University of Banja Luka, BanChapter 5: Besnik Prekazi, M.A. Democracy Plus, Prishtina, Kosovo Erëza Pula, MSc. Democracy Plus, Prishtina, Kosovo Chapter 6: Natasha Najdova Trajkovska, Analytica, Skopje, North Macedonia Chapter 7: Ana Mugoša, Ph.D. The Institute of Socioeconomic Analysis, Podgorica, Montenegro Mirjana Čizmović, Ph.D. The Institute of Socioeconomic Analysis, Podgorica, Montenegro Tanja Laković, Ph.D. The Institute of Socioeconomic Analysis, Podgorica, Montenegro Milenko Popović, Ph.D. The Institute of Socioeconomic Analysis, Podgorica, Montenegro Chapter 8: Marko Vladisavljević, Ph.D. Institute of Economic Sciences, Belgrade, Serbia Mihajlo Đukić, Ph.D. Institute of Economic Sciences, Belgrade, Serbia Olivera Jovanović, M.A. Institute of Economic Sciences, Belgrade, Serbia Jovan Zubović, Ph.D. Institute of Economic Sciences, Belgrade, Serbia Chapter 9: Jovan Zubović, Ph.D. Institute of Economic Sciences, Belgrade, Serbia

Executive summary

Consumption of tobacco products, especially cigarettes in Southeastern Europe (SEE) imposes a significant economic burden on households and society in general. This report examines increases in the price of cigarettes through tobacco excise increases and their associated impacts on tobacco consumption, household expenditures, and tax burdens in different income groups as well as the impact of these increases on government revenues.

Using secondary data from household budget surveys (HBS) for periods ranging from 3 to 12 years, depending on data availability, in six countries (Albania, Bosnia and Herzegovina (B&H), Montenegro, North Macedonia, Kosovo, and Serbia), this research estimates the price and income elasticity of smoking prevalence and intensity, both for the full population and by income group.

For all countries studied, this research finds that price increases achieved through an increase in tobacco excises would result in lower consumption, higher budget revenues, and positive redistribution effects. In order to maximize the effectiveness of tobacco taxation policies, country specifics such as income growth, different elasticities, and behavioral responses of different income groups should be considered when designing policy. The findings are outlined in greater detail below:

Increasing excises (that results in the increase of cigarette prices) will result in lower cigarette consumption

Results suggest that in all countries studied, a price increase of cigarettes will result in lower cigarette consumption. Therefore, if the excise increase leads to a price increase, tobacco consumption in the region will decrease. In most of the countries, the decrease in consumption stems from both a decrease in smoking prevalence and a decrease in the consumption of cigarettes by those who smoke. Prevalence elasticities range from as much as -0.636 in Montenegro to -0.165 in Albania, while in Kosovo prices do not impact the decision to smoke. Total elasticities range from -1.065 in Montenegro to -0.387 in Kosovo. The income elasticities range from 0.595 in North Macedonia up to 1.113 in Albania. Given that income elasticities in all countries studied are high, the response of consumers to excise increases will depend on the rate of income growth. Therefore, when designing the excise increase, policymakers should take into account the expected growth of income in the country. In other words, the increase of excises will result in lower consumption of cigarettes if it reduces the affordability of cigarettes.

Y An increase in cigarette excises will result in an increase in government revenue

In addition, the change in government income from taxes levied on cigarettes is simulated for a scenario in which retail prices would increase either by changing the excise tax or by simultaneously changing the tax and producers' price. In all the countries the price increase would result in increased budget revenue. The change in budget revenue would be the highest in Kosovo, with an estimated increase of 26 percent as a result of a price increase of 25 percent, followed by Serbia and Albania with over 17 percent increased revenues. The lowest increase in budget revenues could be expected in B&H, due to a very high price elasticity, where an increase in the specific excise of 25 percent (which would lead to a 17 percent price increase) would result in a 2.5 percent increase in budget revenues. In the long-run, further positive fiscal effects could be expected since the decrease in cigarette consumption will likely lower health expenditures related to the harmful effects of cigarettes.

These research findings suggest that claims about the negative impact of excise increase on budget revenues fueled by the industry are not based on rigorous evidence. Thus, even if a narrow analysis is applied, focusing strictly on budgetary impact, there are still positive fiscal effects.

In most of the countries studied, an increase in cigarette excises would have an additional redistributive effect.

Total demand elasticities among low-, middle-, and high-income households have proven to be significantly different. In most countries, low-income households have the highest price elasticity, and high-income households have the lowest. As a result, the cigarette price increase is followed by the largest reduction in consumption in low-income households. Unlike the middle- and high-income groups, low-income households also reduce their total expenditures on cigarettes which also has positive effect on their living standard. In the long-run, further redistributive effects could be expected, as lower consumption of cigarettes will benefit the health of low-income households and decrease their expenditures for tobaccorelated illnesses. On the other hand, policy makers should also bear in mind that low-income households are at the same time the most sensitive with regard to changes in their income. Research results show that the income increase would be associated with a comparatively higher increase in consumption within the low-income group. Therefore, improved taxation policy should be designed to include eventual changes in income.

These research results refute the fallacy, often promoted by the tobacco industry, about regressive effects of tobacco taxes. Research in all countries shows that tobacco excise increases would have a progressive effect as the additional tax burden is the lowest for low-income households and the highest for most high-income households, whereas in some countries the share of budget expenditures for cigarettes among low-income households is actually decreased.

1 Introduction

This report presents the research findings from the second research year of the project "*Accelerating Progress on Effective Tobacco Tax Policies in Low- and Middle-Income Countries*". The research was undertaken in six middle-income countries in Southeastern Europe (SEE): Albania, Bosnia and Herzegovina (B&H), Kosovo, North Macedonia, Montenegro, and Serbia. The research was conducted in 2019. The same research methodology was used in all the countries and applied on secondary data from the Household Budget Survey (HBS), thereby providing a comparative analysis for all the countries. The research includes three topics of analysis, performed as follows:

- 1. Using HBS data, estimate the cigarette price elasticity of demand on the extensive (in other words, prevalence elasticity) and the intensive margin (in other words, conditional demand (intensity) elasticity);
- 2. Using HBS data, estimate the cigarette price elasticity of demand by income group;
- 3. Simulate the impact of an increase in tobacco excise and price on consumption and government revenue.

This report builds on the theoretical framework of the two-part model developed by Mullahy and Manning¹. This model estimates the overall demand elasticity as a (corrected) sum of two elasticities: prevalence elasticity and conditional demand (in other words, intensity) elasticity. The prevalence elasticity is estimated via a logit model. The Deaton model and Generalized Linear Model (GLM) are used for the estimation of conditional demand (intensity). The GLM is used as a robustness check (detailed explanation of the Deaton model and the general methodology is presented in chapter 2).

First, the described analyses are performed separately for each country on the overall sample of households. The sample of households is then split into three equal groups: low-, middle-, and high-income groups with the same analyses performed on income subsamples and then, results are compared. Finally, the estimated elasticities are utilized to simulate the effect of price increases on overall cigarette consumption and government revenues.

The remaining part of the report is structured as follows. Chapter 2 describes the methodology used in the analysis, while chapters 3-8 present and discuss the results by country. The report concludes with chapter 9. Supporting tables from chapters 3-8 are included in the appendix, which is available on the online project web page (<u>http://tobaccotaxation.org/</u>).

¹ Manning, W. G., and J. Mullahy. (2001) "Estimating Log Models: To Transform or Not to Transform?" *Journal of Health Economics* 20, no. 4: 461–494.

2 Data and methodology

This chapter describes the data and methodology used in the report. More precisely, it outlines the methodology used to estimate the price participation and intensity (conditional) elasticity of cigarettes. In addition, this chapter discusses the methodology for the estimation of price elasticity at different income levels. The estimates are then used to simulate the impact of a price increase on consumption and government revenue. The same econometric models and simulation methods are applied in all the countries. However, due to slight differences in available data and country specifics, there are minor variations in model specification and years of available data.

All analyses use microdata from HBS data to estimate the price and income elasticities of cigarette use. HBS, an annual survey, provides detailed information on household consumption, as well as on individual characteristics of household members. The price elasticities (and the effects of other variables) are estimated at the household level because information on cigarette consumption is collected for the household as a whole. Table 2.1 reports the available years for the analysis in each country.

Country	Years available		
Albania	2014-2017		
Bosnia and Herzegovina	2007, 2011, 2015		
Козоvо	2007-2017		
Montenegro	2006-2015 and 2017		
North Macedonia	2015-2017		
Serbia	2006-2017		

Table 2.1: Household Budget Survey data available for each country

The methodology applied in each of the research topics is described below.

2.1 Estimation of the price elasticity of demand

Cigarette consumption is often characterized by a mixed distribution that is partly discrete and partly continuous. More precisely, cigarette consumption is characterized by a large proportion of non-smokers, for which the variable describing the consumption takes a zero value and the remaining outcomes that are strictly positive. More formally, the distribution can be expressed as

$$y=0, n = 0, 1, ... ni$$

 $y>0, n = ni+1, ni+2, ... nN$ (1)

The distribution reflects the fact that when faced with the market prices and their own budget constraints and given the utility that they derive from cigarettes used, households are facing two decisions. The household first decides whether to smoke or not smoke (extensive margin). If the household decides to smoke, they then decide how many cigarettes to smoke (intensive margin).

The literature suggests a two-part model to independently model the two decisions². This model is well suited for cigarette use, as the proportion of non-smokers (y=0) globally is high. The World Health Organization (WHO) estimates the proportion of smokers to be approximately 21 percent. ³ The first part of the model estimates cigarette prevalence. It estimates the probability of observing positive tobacco consumption (vs. no consumption), conditional on the set of independent variables. The model is typically estimated by a parametric binary probability model, such as logit or probit. The second part of the model deals with the intensity (level) cigarette consumption. The model estimation is conditional on y_i>0, where the dependent variable is typically a linear function of independent variables. Therefore, it can be estimated via an ordinary or a generalized linear model.

The main variables that enter both models are price and income. These two variables provide the basis for the calculation of price elasticity, income elasticity of cigarette prevalence and the intensity of cigarette use. Since HBS data do not contain the prices of cigarettes, unit values are used as a proxy for prices. The unit values are calculated as the ratio between total household expenditure on cigarettes (in local currency) and total household consumption on cigarettes (in cigarette packs). However, a potential identification problem arises by using this proxy because of the joint determination of cigarette demand and price as well as because of unobserved heterogeneity across regions. This problem is resolved by calculating prices as municipality⁴ averages and controlling for an extensive set of control variables and region fixed effects. Additionally, total household consumption is used as a proxy for household disposable income, as information on income is not consistently available in all the countries.

As the models are estimated separately and independently, the total price and income elasticity is calculated as the corrected sum of the prevalence and the conditional demand (intensity) elasticity, that is, (the method for each component and the aggregation correction is presented in more detail below).

Aside from prices (that is, the average municipality unit value) and income (that is, total household consumption), the models include a set of covariates, consisting of household characteristics (share of men and adults in the household, maximum or mean level of education and activity of the household members), region and settlement fixed effects and variables representing institutional changes relevant to cigarette consumption. Next, the models estimating the prevalence and then the intensity elasticity of cigarette use are presented.

Impacts of Tobacco Excise Increases on Cigarette Consumption and Government Revenues in SEE Countries

² Belotti, F., Partha D., Manning W. G., and Norton E., C. (2015): "Twopm: Two-Part Models." *Stata Journal* 15, no. 1: 3–20.

³ World Health Organization. (2017): *WHO report on the global tobacco epidemic, 2017: monitoring tobacco use and prevention policies.* World Health Organization.

⁴ A primary sampling unit is used if the municipality identifier is not available. This applies to prevalence and GLM models, while the Deaton model initially uses unit values as a dependent variable in the first stage equation. In the second stage unit values are used to purge out household characteristics. These are then also agregated to the municipality or primary sampling unit level.

2.1.1 Estimation of the prevalence elasticity

The first part of the model analyzes whether the price of tobacco impacts the decision of a household to smoke, conditional on the set of independent variables. This decision is typically modeled by using the binary choice model. The nature of the dependent variable is the main difference between a binary choice and the classical linear regression model. Instead of modeling a continuous variable in the binary choice models, the probability that the dependent variable y_i takes value one, which represents the households with positive cigarette expenditure/consumption, versus value zero, which represents the households with zero consumption, is modeled. Consequently, instead of a linear combination of independent variables, a (nonlinear) function of that linear combination is used to explain the probability that a household has positive tobacco expenditures. The most commonly used functions are probit and logit, and in this case, a logit specification is used.

More formally, the following model is estimated:

$$Y = P(y_i > 0) = f(\beta_1 p_i + \beta_2 i_i + \Gamma' X)$$
(2)

where y_i is cigarette consumption of the household *i*. Y is an indicator variable taking value 1 if household consumption is positive; p_i and i_i are prices and total household consumption, respectively. X represents the vector of covariates used in the analysis. After the estimation model is defined, a maximum likelihood procedure is used to fit the coefficients to the logit model.

The logit model assumes that the linear combination of the independent variables $z = \beta_1 p_i + \beta_2 i_i + \Gamma' X$ is related to the dependent variable via the logit function $f(z) = e^z/(1 + e^z)$. Coefficients β_1 and β_2 , as well as the vector of the coefficients Γ , do not represent the marginal effects and have no clear interpretation. For binary choice models, the marginal effects are not constant, but are a function of all independent variables in the model, as the first derivative of the function is also a function of the probability density. The probability density is a function of the linear combination of all independent variables in the model. Therefore, the marginal effects of the price are calculated as

$$ME_p = \Delta P(y_i > 0) / \Delta p_i = f(z) * \beta_1$$
(3)

and is interpreted as the increase in the likelihood that the household has positive cigarette expenditures for a unit increase in price. The marginal effects for the other variables in the model are analogously calculated; the first derivative is taken with respect to the variable of interest. As before, the derivative is a function of the linear combination of all independent variables in the model⁵.

Finally, the price elasticity of cigarette prevalence is calculated as

$$\xi_{p1} = M E_p(\bar{p}/\bar{Y}) \tag{4}$$

where \bar{p} , and \bar{Y} are the average price and prevalence, respectively. The interpretation of the elasticity is that if the prices increase by 1 percent then the probability of positive cigarette

⁵ Green, W. H. (2008): Handbook of Econometrics. *Applied Econometrics*, 2, 413-556.

consumption at the household level increases by ξ_{p1} percent. The interpretation of these effects is, at the level of average prices and the average level of all the variables in the model. The income (that is, total household consumption) elasticity is calculated in a similar fashion.

For a more intuitive understanding of the model results, marginal effects expressed in terms of the percentage point change in prevalence resulting from a percentage change in prices are also calculated. This indicator is calculated as

$$\xi_{p1,pp} = ME_p * \bar{p} \tag{5}$$

The interpretation of the indicator is as follows: for a 1 percent increase in price, the probability that the household will have positive cigarette consumption will increase by $\xi_{p1,pp}$ percentage points.

2.1.2 Estimation of the conditional demand (intensity) elasticity

For the estimation of conditional demand (intensity) elasticity the Deaton demand model⁶ is used, with the GLM as a robustness check. Deaton is the preferred model because it relies on Deaton's consumer theory, and also provides a built-in identification strategy and controls for so-called quality shading and measurement error. These characteristics of the Deaton model make the estimates more robust and precise than the GLM estimates.

Deaton model

The Deaton demand model is a consumer behavior model in which total expenditure on goods is defined as a product of quantity, quality, and prices. Therefore, the household utility function is augmented as it includes quality of the good. Given its definition as the ratio between the total expenditure and the quantity purchased, the unit value represents the product of quality and price⁷. As the model assumes that all households within a cluster (typically a small territory unit, such as municipality or village) face the same market price, within-cluster variations in purchases depend only on total household expenditure and characteristics that reflect the variation in quality, while cross-cluster variations in purchase are due to genuine price variations, among other factors.

The starting point of the Deaton model is comprised of two equations:⁸

$$w_{hc} = \alpha^{0} + \beta^{0} ln x_{hc} + \gamma^{0} . z_{hc} + \theta ln p_{c} + (f_{c} + u_{ch}^{0})$$
(6)

$$lnv_{hc} = \alpha^1 + \beta^1 lnx_{hc} + \gamma^1 z_{hc} + \psi lnp_c + u_{hc}^1$$
⁽⁷⁾

⁶ Deaton, A. (1988): Quality, quantity, and spatial variation of price. *American Economic Review*, 78 (3), 418–430.

⁷ John, R. M. (2008): Price elasticity estimates for tobacco products in India. *Health Policy and Planning*; 23(3), 200-209.

⁸ Deaton, A. (1997): *The Analysis of Household Surveys: A Microeconometric Approach to Development Policy.* Johns Hopkins University Press, Baltimore.

where indices h and c represent households and clusters, respectively. The left hand-side variables in equations (8) and (9) are w_{hc} – share of the household budget spent on cigarettes (in percentages) and the natural logarithm of v_{hc} – cigarette unit values. On the right hand-side of both equations, there is x_{hc} – total expenditures of the household h in cluster c, z_{hc} – other household characteristics, p_c – price of the cigarettes in cluster c, while u_{ch}^0 and u_{hc}^1 represent the error term.

Finally, in equation (1) f_c are the cluster level effects on the budget share, which are assumed to be uncorrelated with the price effect on the budget share. ⁹ Since the prices are not observed, the parameters θ and ψ cannot be directly estimated from equations (8) and (9). However, the assumption that market prices do not vary within the cluster (hence the absence of the index *h* next to prices) enables consistent estimates of the remaining parameters. Therefore, the usage of the cluster deviation-from-the-mean approach cancels the effect of prices from the equations. We estimate the parameters by including cluster-fixed effects (dummy variables for each cluster) in the regression, which yields identical estimates as deviation-from-the-mean approach. ¹⁰

In the unit value equation (equation 9), coefficient β^1 represents the expenditure elasticity, while ψ represents the price elasticity in unit values. When cigarette prices change, assuming a constant budget, households can either decrease their cigarette consumption or switch to a less expensive brand to keep their consumption at the same level. The latter is referred to as quality shading. If there is no quality shading, the value of ψ would be equal to one (as the change of the unit value would correspond to change of the price) and β^1 would be approximately equal to zero. On the other hand, in the presence of quality shading, ψ will be less than one (unit value change will be slower than the change of the price) and β^1 would be approximately equal to zero.

The second stage uses the estimates from the first stage to remove the effects of total household expenditure, and other household characteristics from the budget shares and the unit values. Variables constructed in this way are then used to create cluster averages of budget shares and unit values, which in accordance with equations (8) and (9) can now be written as

$$y_c^0 = \alpha^0 + \theta lnp_c + f_c + u_c^0 \tag{8}$$

$$y_c^1 = \alpha^1 + \psi ln p_c + u_c^1 \tag{9}$$

The estimation of the parameter θ , which represents the price semi-elasticity is not feasible since the price is not directly observed. However, Deaton's model uses the presence of price in both equations to establish a relationship between budget shares and unit values. The

⁹ John, R. M. (2008): Price elasticity estimates for tobacco products in India. *Health Policy and Planning*; 23(3), 200-209.

¹⁰ Frisch, R., and F. V. Waugh. (1933): Partial time regression as compared with individual trends. *Econometrica* Vol. 1, No. 4, 387-401.

result is parameter ϕ , a hybrid of price and quality elasticity. Deaton proves that $\phi = \psi^{-1} \theta$.

In the third stage, the weak separability assumption is introduced. Given the budget share is defined as the product of the quantity of cigarettes and unit value divided by total expenditures, parameter θ can be estimated as:

$$\hat{\theta} = \hat{\phi} / [1 + (w - \hat{\phi}) \frac{\hat{\beta}^1}{\hat{\beta}^0 + w(1 - \hat{\beta}^1)}]$$
(10)

where $\hat{\beta}^1$ and $\hat{\beta}^0$ are coefficients estimated in equations (8) and (9), while *w* is the average value of the budget share. The value of $\hat{\Psi}$ is then equal to $\hat{\Phi}^{-1}\hat{\theta}$. From there, price elasticity of demand can be estimated as:

$$\hat{\epsilon}_p = \left(\frac{\hat{\theta}}{w}\right) - \hat{\psi} \tag{11}$$

Similarly, since equation (8) has budget shares instead of the logarithm of quantity, parameter β^0 does not estimate the expenditure elasticity. Instead, the total elasticity of expenditure can be estimated as:

$$\hat{\epsilon}_i = 1 - \hat{\beta}^1 + (\frac{\hat{\beta}^0}{w})$$
 (12)

Following John ¹²symmetry restrictions are imposed to increase the precision of the parameter estimates. Furthermore, the system incorporates a composite commodity variable that accounts for all other purchased goods. Due to the calculation procedure, standard errors of price elasticity cannot be taken directly from the regression analyses. Instead, the standard errors of the estimated price elasticity are calculated by using the bootstrapping procedure with 1000 replications.

Estimation of the conditional demand (intensity) elasticity via GLM

For the households that have positive cigarette expenditures, the number of cigarette packs smoked per month is modeled as a linear function of the independent variables. Therefore, the model is estimated as follows:

$$E(y_i | y_i > 0) = \alpha_1 p_i + \alpha_2 i_i + \Theta' X$$
⁽¹³⁾

where, as before, y_i is cigarette consumption of household *i*, p_i and i_i are prices and total household consumption, respectively. *X* represents the vector of other covariates used in the analysis. The interpretation of the coefficients α_1 , α_2 and the coefficients vector θ is straightforward. They represent the marginal effects of the independent variables. The model is typically estimated via ordinary least squares (OLS) or GLM. The dependent variable is generally represented in the log form as it helps to stabilize non-constant error variance (that is, heteroscedasticity). However, it is necessary to re-transform the coefficients to in-

¹¹ Deaton, A. (1997): *The Analysis of Household Surveys: A Microeconometric Approach to Development Policy.* Johns Hopkins University Press, Baltimore.

¹² John, R. M. (2008): Price elasticity estimates for tobacco products in India. *Health Policy and Planning*; 23(3), 200-209.

terpret them as marginal effects. The downside to this method is that during the retransformation, prediction bias may be introduced into the conditional demand.

Manning and Mullahy propose that the second part of the model is estimated via GLM, which does not require the assumption of homoscedasticity or normality.¹³ GLM is estimated by the maximum likelihood method. GLM estimates the following model:

$$g\{E(y_i | y_i > 0)\} = \alpha_1 p_i + \alpha_2 i_i + \Theta' X, y^{\sim F}$$
(14)

where g{.} is the so-called "link function". The link function describes the relationship that the dependent variable and the linear combination of the predictors have. The type of link function that should be used in GLM is tested via the Box-Cox test. ¹⁴ Since the GLM does not assume a constant variance, within the model a function F is defined as the distributional family that is used to describe the relationship between the variance and mean. When the link function is determined, the Modified Park test is used to find the best approximation of the dependent variable variance.

A standard practice in health economics is to use GLM with gamma family and a log link function. This combination has been proposed to be a more robust alternative to a semi-log regression specification. ¹⁵ The difference between the OLS and GLM methods is that the OLS estimator estimates $E[\ln y | x]$. Once obtained, the OLS coefficients require retransformation. The GLM estimator estimates $\ln[E(y|x)]$, and therefore estimates the marginal effect directly, thereby circumventing the prediction bias issue present in the OLS method. The GLM estimator is consistent even if the variance distribution is not properly defined and does not assume homoscedastic errors. After the model estimation, we calculate the conditional (intensity) elasticity of cigarettes quantity demanded as

$$\xi_{p2} = M E_p(\bar{p}/\bar{y}) \tag{15}$$

where \bar{p} , and \bar{y} are the average price and quantity of cigarettes consumed by households with positive consumption respectively. The interpretation of conditional demand elasticity is that if the price increases by 1 percent, cigarette consumption would decrease by ξ_{p2} percents, assuming that the smoking participation decision does not depend on the price. Income (that is, total household consumption) elasticity is calculated in a similar way.

2.1.3 Estimation of the total demand elasticity

In previous chapters, the methodology of the estimation of the prevalence and the conditional demand (intensity) elasticity was explained. Although the literature suggests that these two decisions can be modelled independently¹⁵, total elasticity cannot be calculated as simple sum of the two elasticities. Instead, this sum needs to be corrected for the fact that a change in the smoking prevalence can attenuate or enlarge the effect of the conditional de-

¹³ Manning, W. G., and J. Mullahy. (2001) "Estimating Log Models: To Transform or Not to Transform?" *Journal of Health Economics* 20, no. 4: 461–494.

¹⁴ Box, G. E., & Cox, D. R. (1964). An analysis of transformations. *Journal of the Royal Statistical Society: Series B* (Methodological), 26(2), 211-243.

¹⁵ Manning, W. G., Basu A:, and Mullahy J. (2005): "Generalized Modeling Approaches to Risk Adjustment of Skewed Outcomes Data." Journal of Health Economics 24, no. 3: 465–88

mand (intensity) elasticity. In order to make this more clear, an example is provided with the formula that converts the two elasticities into total elasticity.

Assume that the total population of country XYZ is 10 million people, that that country has a prevalence rate of 40 percent, and that conditional average consumption per person is 25 cigarettes per day (including only those people who smoke). This means that about 4 million people smoke, and total consumption amounts to 100 million cigarettes per day. This situation is presented in table 2.2. column baseline.

Also assume that the prevalence price elasticity in a country is -0.3, while the conditional demand (intensity) elasticity is -0.5. This means that if the prices increase by 1 percent, the prevalence would be lower by 0.3 percent (that is, to 39.88 percent), while the consumption per person would be lower by 0.5 percent (that is, to 24.875 cigarettes per day). This decrease the number of people smoking to 3.988 million (that is, by 0.3 percent), but the total consumption calculated as the product of new prevalence and consumption would decrease by -0.7985 percent, which is less than a simple sum of two elasticities of 0.8 percent. Therefore, due to the prevalence change, a total change in consumption will not be a simple sum of the two elasticities, so the change in prevalence should be corrected for when adding up the change in consumption.

		Baseline	Price increases by 1%	% change
Total population	1	10,000,000	10,000,000	
Prevalence	2	40.0%	39.88%	-0.30%
Consumption per person (in cigarettes)	3	25	24.875	-0.50%
Number of people smoking	4=1*2	4,000,000	3,988,000	-0.30%
Total consumption	5=4*3	100,000,000	99,201,500	-0.7985%

Table 2.2: Hypothetical example for the calculation of the total demand elasticity

More formally the total elasticity can be calculated according to the following formula:

$$\xi_p = \xi_{p1} + (1 + \xi_{p1}) * \xi_{p2} \tag{16}$$

Where ξ_{p1} represents the prevalence elasticity, ξ_{p2} represents the conditional demand (intensity) elasticity and ξ_p represents the total elasticity, if all the elasticities are expressed as percentages.

2.2 Estimation of elasticities at different parts of the income distribution

As mentioned in the introduction, the second part of the analyses estimates the price and income elasticity of demand by income group. Income groups are constructed based on total household consumption (a proxy for income) per capita. Given the relatively small sample size in some countries, three income groups are created: low-income, middle-income, and

high-income. As in all the countries, several waves of HBS is used, and the division into three income groups is done for each year, so that an equal number of households belongs to each of the three groups in all years.

After dividing the sample into three income groups, prevalence elasticity is estimated using a logit model and conditional demand (intensity) elasticity using the Deaton model, followed by use of the above formula for total elasticity to calculate total elasticity by income group.¹⁶

2.3 Simulation of price and excise increase on consumption and government revenue

Finally, within topic 3, the estimated price and income elasticities are used to simulate the impact of price and excise tax increase on consumption and government revenue. As mentioned in the introduction, the total price and income elasticities are calculated as a corrected sum of prevalence elasticity and intensity (that is, conditional demand) elasticity from the Deaton model. In both cases, the elasticities are used when applying the models to the overall sample.

The starting point of the analysis is cigarette consumption, which is obtained from the administrative data on cigarette packs for the year for which the latest HBS is available (a more detailed data source description will be given in each country chapter). In order to account for the impact of an increase in income on consumption, the following inputs are used: total HBS real expenditure growth (a proxy for income growth) based on the ratio between the total expenditure in the year t+1 and the total expenditure in the year t, where t is the latest year when HBS is available¹⁷. Three scenarios are simulated, presenting the estimated impact of three alternative price increases: of 10, 25, and 50 percent.

In order to calculate a change in quantity demanded (or consumption), the following formula is applied:

$$D_{t+1} = D_t (1 + \xi_p * \Delta p[\%] + \xi_i * \Delta i[\%])$$
(17)

where D_{t+1} is the new demand, D_t is the demand in year t, ξ_p and ξ_i are price and income elasticities, while $\Delta p[\%]$ and $\Delta i[\%]$ represent the percentage increases of real prices (which are set arbitrarily at 10, 25 and 50 percent) and real income (fixed, calculated as a ratio between the total consumption in the year t+1 and the total consumption in the year t, where t is the latest year when HBS is available).

The calculation of a change in government revenue stemming from taxes on cigarettes is done in two steps. In the first step, for year *t*, the excise and VAT is calculated for a single cigarette pack according to the current taxation rules in each country and this rule is applied to the weighted average price of cigarettes in the country in year *t*. The change in price that

¹⁶ The prevalence model, as well as the GLM for estimation of the conditional demand (intensity), uses the price proxy calculated based on the unit values from the overall sample. Therefore, all households, regardless of the income groups they belong to, are "facing" the same price.

¹⁷ Although the data from the year t+1 are not available in all the countries this information can be found in the statistical reports.

would occur in year t+1 is simulated, and the impact that this would have on excise and VAT in each country for year t+1 is calculated. Where the country has a specific excise rate, the increase in the specific excise from the year t to year t+1 will be at the same rate as the increase of the price (that is, by 10, 25 and 50 percent in the three simulation scenarios).

In the second step, for the year t, the total excise and VAT is calculated as a product of the excises and VAT charged on the single pack (price at the average weighted price level) according to the prices and taxation rules from the year t, and total demand from the administrative data from the year t. For the year t+1, similarly, the total excise and VAT is calculated as a product of the excises and VAT charged on the single pack according to the increased prices and taxation rules from the year t+1, and the simulated demand calculated in the equation (15). Data is presentenced in euros so that they are more easily comparable across six countries in the SEE region.

2.3.1 Simulation of the impact of price on demand and expenditures of income groups

Finally, the impact of a price change on cigarette demand and expenditure on cigarettes for each of the income groups is calculated. The simulation strategy is similar to the one for the overall sample and based on the estimated elasticities (the methodology for the estimation of the elasticities is explained in section 2.2.). The starting point of the analysis is the cigarette consumption in each of the income groups. As the administrative data are not available for each of the income groups, HBS data for the last year available is used to calculate the share of cigarette consumption of each income group in total country consumption. These shares are multiplied by the total consumption from administrative data to derive the estimated consumption of each of the income groups.

The total expenditure growth of each of the income groups is calculated as an increase in the total expenditure between the last two years of the HBS data available (2016 and 2017). The scenario in which prices increase by 25 percent is simulated as a middle increase among the previous solutions. In order to arrive at the demand change for each of the income groups, equation (17) and the data for each of the income group is used. The change in expenditure for each income group is calculated as the difference in products of weighted average price and the demand for each income group in year t and year t+1 in which the prices increase by 25 percent.

6 North Macedonia

With around 40 percent of adults smoking, smoking prevalence in North Macedonia is among the highest in the world. Despite an approximate 20 percent increase in price between 2015 and 2017, smoking prevalence remained stable due to very low prices of cigarettes of around EUR 1.3 per pack. At the same time, the number of cigarettes consumed, or smoking intensity, has just slightly declined from 30.5 packs per household per month in 2015 to 28.2 in 2017.

Higher cigarette prices can reduce both smoking prevalence and consumption of cigarettes among smokers. The results of this study suggest that a 10 percent price increase would decrease smoking prevalence by 2.14 percent. Most of this change would occur in low- and middle-income households. Similarly, smoking intensity among those who smoke would decline by around 2.3 percent.

Increases in income would increase both smoking prevalence and intensity. A 10 percent increase in income would, on average, increase the quantity of cigarettes consumed by 8.7 percent. Low- and middle-income households would respond the most to this change, with more than 10 percent increase in consumption, mostly because around 5 percent of households would start consuming cigarettes.

A price increase, through higher excise taxes, would not only reduce consumption, but also generate significant additional revenues. A 25 percent increase in specific excise, which would result in 17 percent price increase, would reduce consumption by 8.1 percent and increase government revenues by 12.6 percent.

6.1 Data and descriptive statistics

This research examines the responsiveness of people's decision of whether to smoke or not and how many cigarettes to consume when faced with price and income changes. The research uses HBS³⁰ data between 2015 and 2017. An overall change in cigarette consumption can result from two changes - change in the number of smokers expressed by the prevalence rate and change in the conditional intensity of smoking of those people who smoke³¹.

The analysis includes approximately 2,800 households per year, which adds up to precisely 8,593 households for the observed three-year period. HBS data provides only information on consumption of cigarettes, while other types of tobacco products, such as cut tobacco, cigarillos, and vaping or electronic cigarettes are not included. As it is likely that some tobacco users may substitute between different types of tobacco, cigarette consumption may be impacted by not only its own prices but also price of other tobacco products. However, this analysis is not able to account for this potential substitution effect due to a lack of data. Nevertheless, despite this limitation, this study provides very valuable information for the design of effective tobacco tax policy in North Macedonia.

³⁰ HBS data is collected by the Statistical Office of North Macedonia (SONMK).

³¹ Chaloupka F, Warner KE, Cuyler A, Newhouse J. (2000). The economics of smoking. In: Handbook of Health Economics, 1; 2000. pp 1539–1627

Recent trends suggest that, even though moderate, there has been a negative relationship between cigarette prices and consumption in North Macedonia. As Table 6.1 below shows, while the average price per pack of cigarettes increased from 2015-2017 by almost MKD 17, or by almost 23 percent, consumption of cigarettes has declined 7.5 percent, or, on average, by 2.3 packs per household per month. Prevalence has, however, not changed much. This moderate change in consumption is most likely due to relatively low prices of cigarettes, averaging at only around EUR 1.3 per pack.

Year	Smoking prevalence percent) ¹	Average number of cigarettes packs (per household, per month) ²	Average real ³ monthly household expenditure on cigarettes ¹³ (in MKD)	Average real price ^{1 2 3 4} (in MKD)
2015	40.5%	30.5	2226.6	73.14
2016	39.7%	29.1	2333.9	80.41
2017	39.5%	28.2	2550.4	89.67

Table 6.1: Cigarettes consumption in North Macedonia

Source: Authors' calculations based on HBS data for North Macedonia.

¹ Percent of households who report consumption of cigarettes in total number of households in the HBS data.

² Average consumption (in packs) per month of households who report consumption of cigarettes.

³ In 2005 values.

⁴ Average real price is proxied by an average ratio of reported household expenditure of cigarettes and purchased quantity (i.e. average unit value).

6.2 Methodology

Analysing the responsiveness of prevalence and cigarette consumption to changes in price and income assumes estimation of respective elasticities. The analysis employs the two-part model (see Chapter 2 for more details). Firstly, the price and income elasticity of prevalence and smoking intensity for all households is estimated, and then the households are divided into three income groups (low-, middle-, and high-). The analysis also controls for other factors that may impact a household's decision on smoking participation and smoking intensity, such as demographic factors. As no new tobacco control policy was introduced in North Macedonia during the observed period, there are no legislative changes included in the analysis.

6.2.1 Prevalence and conditional elasticity for all households

Table 6.2 shows that a 10 percent increase in price would reduce smoking prevalence by 2.1 percent, and smoking intensity by 2.3 percent, while a 10 percent increase in income would increase prevalence by 4.1 and smoking intensity by 4.7 percent.

Tuble 0.2. Thee and meetine clasticities of smoking prevalence and intensity							
Dravalance Floaticity	Price Elasticity	-0.214*	(0.123)				
	Income Elasticity	0.411***	(0.026)				
	Price Elasticity	-0.232*	(0.026)				
Conditional Intensity elasticity	Income Elasticity	0.465***	(0.024)				
Total domand electicity	Price Elasticity	-0.446					
i otal demand elasticity	Income Elasticity	0.874					

Table 6.2: Price and income elasticities of smoking prevalence and intensity

Source: Authors' calculations based on HBS data for North Macedonia.

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 For Deaton model bootstrapped standard errors in parentless.

Impacts of Tobacco Excise Increases on Cigarette Consumption and Government Revenues in SEE Countries

For smoking intensity, two methods are used to estimate the price and income elasticity of smoking intensity. Estimates from the Deaton model are presented in Table 6.2 as the main estimates. The estimates from the generalized linear model (GLM), which are used as a robustness check (see Chapter 2 for more details), are a bit lower but close in magnitude, with total price elasticity of -0.362 and total income elasticity of 0.776. It is not surprising that the estimates from these two methods are somewhat different. As Chapter 2 explains, given a lack of data on market prices paid by each household, unit values are used. While the Deaton method is able to isolate any impact of personal characteristics on brand choices (such as quality of cigarettes), the GLM model is not able to do so.

6.2.2 Total price and income demand elasticity

Once prevalence and intensity elasticity are observed together, a 10 percent increase in price decreases consumption by 4.5 percent, and a 10 percent increase in income would increase it by 8.8 percent (Table 6.2). In other words, if both price and income increased at the same time by 10 percent each, the overall impact would be an increase in consumption by 4.3 percent, due to a relatively stronger impact of income changes. This points out the importance of larger price increases to more than offset the impact of higher income on consumption.

6.3 Price and income elasticity by income group

In this section, cigarette demand trends and cigarette price and income elasticity are analyzed by income group. The households are grouped based on the total household expenditure per capita per month, which is used as a proxy for household income. As Table 6.3 shows, the high-income group spends, in total, more than 3.3 times more than the lowincome group on cigarettes. At the same time, the low-income group spends 4.7 percent of their budget on cigarettes, while the high-income group spends only 2.4 percent. As evidence from other countries suggests, with such high spending on cigarettes by the lowincome households, there is likely a crowding out of spending on basic necessities, both food and non-food³².

	Low-income group	Middle-income group	High-income group
Average income (in MKD)	15,043	25,857	49,538
Average share in cigarettes consumption	28.9 percent	32.9 percent	38.2 percent
Average expenditure on cigarettes (in MKD)	712.47	920.23	1207.40
Average share of cigarette expenditure in total household budget	4.7 percent	3. 6 percent	2.4 percent

Table 6.3: Cigarette consumption and spending by income group

Source: Authors' calculations based on HBS data for North Macedonia.

³² Husain MJ, Datta BK, Virk-Baker MK, Parascandola M, Khondker BH (2018). The crowding-out effect of tobacco expenditure on household spending patterns in Bangladesh. PLoS ONE 13(10): e0205120. https://doi.org/10.1371/journal.pone.0205120; Do YK, Bautista MA. (2015). Tobacco use and household expenditures on food, education, and healthcare in low-and middle-income countries: a multilevel analysis. BMC public health. 2015; 15(1), 1098.; John RM. (2008). Crowding out effect of tobacco expenditure and its implications on household resource allocation in India. Social Science & Medicine. 2008 Mar;66(6):1356–67.

6.3.1 Demand trends by income group

As Figure 6.1 shows, while the middle-income group has seen a continued declining trend in smoking prevalence between 2015 and 2017, in line with an increase in price, the trend in smoking prevalence of the low- and high-income groups has been unstable. At the same time, smoking intensity in the high-income group has been steadily declining, while for the low-income group, smoking intensity has been increasing.

Source: Authors' calculations based on HBS data for North Macedonia.

Notes: Smoking prevalence is defined as the share of the households with positive tobacco consumption, while smoking intensity represents the number of cigarettes packs a household with positive expenditures on cigarettes smoked per month. Cigarettes prices are defined as psu/year average cigarettes' unit values (ratio between total monthly expenditure on cigarettes and quantity) and expressed in real terms (2005=100).

6.3.2 Prevalence and intensity elasticity

The results shown in Table 6.4 suggest that smoking prevalence among low- and middleincome households responds to changes in price. Thus, a price increase of 10 percent reduces smoking prevalence by 4.5 percent in low-income households and by 4.9 percent in middle-income households. On the other hand, cigarette price does not seem to be a relevant factor for a smoking decision of high-income households. Unlike the price, income seems to be a relevant factor in all income groups in deciding whether to smoke or not, but with a different magnitude. The low- and middle-income groups respond to a change in income quite similarly, and more than the high-income group, with an income elasticity around 0.5. Thus, if their income increases by 10 percent, smoking prevalence among low- and middleincome households will increase by about 5 percent.

In Table 6.4, the price elasticity of smoking intensity for low-income households is not significant, suggesting that these households do not respond to price in determining the quantity of cigarettes they consume. On the other hand, middle- and high-income households respond to higher prices by reducing the quantity of cigarettes they smoke. Thus, a 10 percent increase in price would reduce consumption by 4.4 and 2.8 percent for the middle- and high-

income groups, respectively. Responsiveness to changes in income is, as expected, the highest for low-income households where a 10 percent increase in income increases cigarette consumption by 7.4 percent.

Table 6.4	: Price	and	income	elasticities	of	smoking	prevalence	and	intensity	by	income
group											

	Low-income		Middle-income		High-income		All households	
	group		group		group			
Prevalence elasticity								
Price Elasticity	-0.446*	(0.243)	-0.495**	(0.220)	0.189	(0.184)	-0.214*	(0.123)
Income Elasticity	0.496***	(0.077)	0.524***	(0.126)	0.336***	(0.057)	0.411***	(0.026)
Conditional demand (intensity) elasticity								
Price Elasticity	0.581	(0.400)	-0.441*	(0.518)	-0.278*	(0.398)	-0.232*	(0.026)
Income Elasticity	0.745***	(0.101)	0.597***	(0.170)	0.246***	(0.065)	0.465***	(0.024)

Source: Authors' calculations based on HBS data for North Macedonia.

Notes: *** p<0.01, ** p<0.05, * p<0.1; standard errors in parentheses; for Deaton model – bootstrapped standard errors in parentheses.

6.3.3 Total price and income elasticity

Figure 6.2 below suggests that, on average, a 10 percent increase in cigarette price would reduce consumption by 4.5 percent in the low-income group, 9.4 percent in the middle-income group, and 2.8 percent in the high-income group.

Figure 6.2: Price and income elasticities of prevalence and intensity of smoking by income

Source: Authors' calculations based on HBS data for North Macedonia.

At the same time, a 10 percent income increase would increase consumption by 12.4, 11.2 and 5.8 percent in the low-, middle-, and high-income group, respectively. This high-income

elasticity coefficient, which is larger than 1, suggests that cigarettes can be considered as luxury good, for low- and middle-income groups in North Macedonia.³³

6.4 Impact of price increase on consumption and government revenues

This section presents a simulated impact of cigarette specific tax and price change on quantity demanded and government revenues. It gives the projected consumption and revenues for 2018, based on the 2017 baseline scenario based on the full sample of all households, and a simulation by income group.

Following are the assumptions of the simulation:

- Cigarette tax paid sales in 2017 was 4.290 million sticks, obtained from the tax authority based on the number of sold excise stamps. While the number of sold excise stamps may not represent the actual consumption, it represents the base for collecting tax revenues.
- Real consumption growth was 2.4 percent in 2017.³⁴ Given that official records on real consumption growth rates by income group is not available, real growth rates in consumption by income group from HBS (2015-2017) is used. The real growth rate of private consumption in the low-income group was -3.14 percent, -1.03 percent for the middle-income group, and 12.41 percent for the high-income group. The first scenario assumes an average 2.4 percent growth rate in private consumption for all three income groups, and the second scenario assumes different real growth rates.
- In the absence of the official weighted average price on cigarettes, the price of the most sold brand, according to WHO website³⁵ is used. In 2018, it was MKD 79 or EUR 1.28 using the official average exchange rate in 2017 of MKD 61.49 per EUR.
- The specific excise tariff in 2017 was MKD 2.053 per stick. (EUR 0.033 per stick) Ad valorem excise was 9 percent of the retail price (EUR 0.006 per stick), VAT was 18 percent per cigarette pack price (EUR 0.010 per stick). The resulting total tax burden was, therefore, EUR 0.78 per pack, or 60.94 percent of the retail price.

Three scenarios of excise tax increase (10, 25, and 50 percent) are presented with the resulting price increase using the full sample with all households (Table 6.5). For example, a 25 percent specific excise tax increase (equivalent to price increase of around 17 percent) would lead to a reduction in overall consumption by 5.6 percent, and an increase of 15.7 percent in government revenue. This reduction in consumption would result from a reduction in smoking prevalence by 3.6 percent, and a reduction in smoking intensity of 3.9 percent of those who smoke. As data on other types of tobacco is not available, it is not possible to determine whether some if this change may be due to a substitution to other types of tobacco products.

³³ <u>Tarantilis F, Athanasakis K, Zavras D, Vozikis A, Kyriopoulos I</u>. (2015). Estimates of price and income elasticity in Greece. Greek debt crisis transforming cigarettes into a luxury good: an econometric approach, BMJOpen2015;5:e004748.doi:10.1136/bmjopen-2013004748

³⁴ https://www.imf.org/en/Publications/CR/Issues/2019/01/28/Former-Yugoslav-Republic-of-Macedonia-2018-Article-IV-Consultation-Press-Release-Staff-46559

³⁵ https://www.who.int/tobacco/surveillance/policy/country_profile/mkd.pdf?ua=1

			Price	Consumption		Revenues	
			Euro	Million packs	% change	Million euro	% change
Baseline		1.28	214.5		209.8		
	Specific tax in- crease	Resulting price in- crease					
Scenario	10%	7%	1.37	212.4	-1.0%	226.5	8.0%
	25%	17%	1.50	202.5	-5.6%	242.8	15.7%
	50%	34%	1.72	186.1	-13.3%	264.0	25.8%

Table 6.5: Projected overall change in consumption and revenuesfor different increases in specific excise tax

Source: Authors' calculations based on HBS data for North Macedonia

As explained above, a more precise idea of the impact on consumption and revenues can be gained by analyzing changes by income group. In Table 6.6 below, a 25 percent excise tax increase (resulting in around 17 percent price increase) is assumed with two options for real growth of private consumption.

Table 6.6: Projected consumption and revenues by income group from a 25 percent specifi	С
excise tax increase (option 1)	

	Consumption					
	Baseline ¹	Scenario ¹	% change	Baseline ²	Scenario ²	% change
Income group						
Low	62.1	59.3	-4.4%	60.7	70.9	16.8%
Middle	70.5	61.4	-12.9%	69.0	73.1	6.0%
High	81.9	79.3	-3.2%	80.2	94.9	18.4%
Total	214.5	200.1	-6.7%	209.8	238.9	13.8%

¹ Million packs; ² EUR million

Source: Authors' calculations based on HBS data for North Macedonia

The first option, assuming 2.4 percent growth in consumption of all income groups is presented in Table 6.6. In that case, a 25 percent specific excise tax increase would result in an overall reduction in consumption of 6.7 percent, and a 13.8 percent increase in government revenue. The middle-income group would see the highest reduction in consumption, and the lowest increase in their tax burden. Consumption of the low-income group would reduce by 4.4 percent, primarily because around 7.7 percent of households would stop consuming cigarettes.

Finally, in the second option the impacts by income group are estimated assuming different changes in private consumption for each group based on the HBS trends. Table 6.7 shows that the overall impact is similar to that in option 1, there are significant differences by income group. The middle-income group would still see the most benefits from this policy change, with a reduction in consumption of 17.3 percent, and the lowest increase in tax burden of 1.3 percent. However, the consumption of the low-income group would decrease much more than in option 1 (11.6 percent), and the additional tax burden would be lower.

Finally, the high-income group would see a small increase in consumption and the highest increase in tax burden.

Table 6.7: Projected consumption and revenues by income group from a 25 percent specific
excise tax increase (option 2)

		Consumption		Revenues		
	Baseline ¹	Scenario ¹	% change	Baseline ²	Scenario ²	% change
Income group						
Low	62.1	54.9	-11.6%	60.7	65.8	8.4%
Middle	70.5	58.3	-17.3%	69.0	69.9	1.3%
High	81.9	83.9	2.4%	80.2	100.5	25.5%
Total	214.5	197.1	-8.1%	209.8	236.3	12.6%

¹ Million packs; ² EUR million

Source: Authors' calculations based on HBS data for North Macedonia

6.5 Policy implications and recommendations

Given high smoking prevalence in North Macedonia, urgent attention is needed to develop efficient tobacco control policies. Smokers in countries with higher cigarette prices are significantly more motivated to quit smoking.³⁶ Hence, to have a positive impact on public health, cigarette prices need to increase faster than income to ensure that cigarettes become less affordable over time.

Tobacco tax policy in North Macedonia is currently not based on the empirical evidence that points to the necessity of higher taxes as an effective way to reduce consumption and related health system savings. At the same time, the tax policy is only partly aligned with the EU and WHO recommendations, while other tobacco control measures have even deteriorated over the last year.³⁷

Policy makers should pay particular attention to the finding of this study that an increase by 25 percent in excise tax (leading to 17 percent increase in price) would lead to an overall reduction in consumption by around 8.1 percent, and to 12.6 percent increase in additional government revenues. This would cause additional savings in the health system which should be a subject of further research.

Revision of the existing tax policy would therefore lead to an increase in tax revenues and have many other positive consequences related to lower consumption. In addition, it can be concluded that it does not seem that tax increase will have a socially regressive dimension, because the higher-income households bear the additional tax burden. Low-income household demand for cigarettes shows lower responsiveness to price increases, as compared to

³⁶ Chaloupka, F, Peck I, Peck R, Tauras J., Xu X. and Yurekli A. (2010). "<u>Cigarette Excise Taxation: The Impact of</u> <u>Tax Structure on Prices, Revenues, and Cigarette Smoking</u>," <u>NBER Working Papers</u> 16287, National Bureau of Economic Research, Inc.

³⁷ Mijovic Spasova T. and Mijovic Hristovska B.(2018), Economics of Tobacco and Tobacco Taxation, National Study – MACEDONIA, Research performed within the Project Accelerating Progress on Effective Tobacco Tax Policies in Low-and Middle- Income Countries. Analityca think tank, North Macedonia.

middle-income households, possibly due to lower awareness of the risks of smoking within those households. The tax system can be important instrument for achieving health policy goals by reducing cigarette consumption and by generating additional revenue for the state budget in North Macedonia.

9 Summary and Conclusions

The results of the research provide a unique comparative analysis for all the countries. This chapter summarizes the results presented in country chapters 3 to 8 and offers conclusions and recommendations based on the collected evidence.

In all the analyses, microdata from HBS was used to estimate the price and income elasticities of cigarettes use. Descriptive data from HBS is presented in tables 9.1-9.3.

	ALB	B&H	KSV	MNE	NMK	SRB
2006				0.98		0.78
2007		0.81	1.28	0.95		0.89
2008			1.22	0.95		0.89
2009			1.52	1.07		0.95
2010			1.40	1.13		1.00
2011		1.21	1.40	1.34		1.04
2012			1.56	1.52		1.15
2013			1.51	1.64		1.41
2014	1.63		1.52	1.74	1.50	1.59
2015	1.65	1.87	1.66	1.70	1.65	1.56
2016	1.68		1.77		1.86	1.66
2017	1.71		1.89	1.68		1.78

9.1 Average cigarette prices in six SEE countries (\in , in 2015 values)

The price of cigarettes, as a proxy of unit values, calculated from HBS is similar in all countries. The cost is deflated to 2015 values since that is the only year for which data is available from all countries. Even though the prices were significantly different in the past, recent data show that they have converged to a large extent. This leads to the conclusion that the market of six countries could be observed as one single market.

5.2 Smoking prevalence in six SEE countries (in 76)								
	ALB	B&H	KSV	MNE	NMK	SRB		
2006				52.4		49.7		
2007		57.4	48.2	52.6		47.9		
2008			47.8	56.2		44.1		
2009			41.1	50.4		42.0		
2010			52.1	44.1		38.8		
2011		48.4	50.9	44.2		38.4		
2012			53.4	42.5		38.0		
2013			49.0	42.1		35.1		
2014	38.7		49.7	44.1		34.4		
2015	31.6	33.8	46.9	40.2	40.5	36.3		
2016	31.3		45.2		39.7	33.7		
2017	31.7		46.3	36.5	39.5	34.2		

9.2 Smoking prevalence in six SEE countries (in %)

While the average cigarette price is similar across countries, smoking prevalence⁵⁸ varies between 31 and over 56 percent over the 12 year period. However, it is important to note that, as reported in previous studies⁵⁹ in Albania, B&H, and Kosovo, there is a large disproportion in prevalence among the male and female population, while in other countries the rates are similar for both genders. It is also noticeable that prevalence rates do not follow the same trend in the region. The largest decrease is registered in B&H, Serbia, and Montenegro, while in Kosovo and North Macedonia there is practically no change observed. The decrease in prevalence rates is stagnating in the latest reported years.

				, ,		
	ALB	B&H	KSV	MNE	ΝΜΚ	SRB
2006				34.7		39.1
2007		37.4	41.3	34.5		39.2
2008			40.2	38.4		39.0
2009			43.1	34.2		37.9
2010			40.0	32.4		37.0
2011		32.3	40.6	31.9		36.2
2012			43.2	29.4		34.3
2013			41.6	27.6		29.6
2014	17.4		42.4	26.5		27.7
2015	19.0	22.9	42.0	28.8	30.5	28.9
2016	18.4		40.8		29.1	29.1
2017	19.5		41.9	33.4	28.2	27.2

9.3 Average monthly household consumption of cigarettes in six SEE countries (number of packs)

The change in smoking intensity also varies by country. While in Albania, Kosovo, and Montenegro there has been no change in average consumption, in B&H, Serbia, and North Macedonia there is a stable decreasing trend.

The differences observed in descriptive statistics have a significant impact on the research outcomes, namely estimation of prevalence and intensity price elasticity of demand for cigarettes; estimation of price elasticity of demand by income group; and simulation of the impact of an increase in tobacco excise and price on consumption and government budget.

				=		
	ALB	B&H	KSV	MNE	ΝΜΚ	SRB
Prevalence	-0.165	-0.563	0.000	-0.636	-0.214	-0.265
Intensity	-0.267	-0.458	-0.387	-0.432	-0.232	-0.395
Total	-0.432	-1.018	-0.387	-1.065	-0.446	-0.659

Table 9.4: Price elasticities of cigarette consumption in six SEE countries

⁵⁸ Smoking prevalence in this study is expressed as a share of households that report positive consumption of cigarettes in total number of households.

⁵⁹ http://www.tobaccotaxation.org/research.php?cID=26&Ing=srb

Increasing excises and prices of cigarettes will result in lower cigarette consumption in all countries. Total price elasticity varies from -0.387 in Kosovo to -1.065 in Montenegro, indicating that if the cigarette prices increase by 10 percent the demand for cigarettes would decrease by 3.8-10.6 percent. This decrease would stem from both a decrease in the smoking prevalence and smoking intensity. More details about price elasticities are presented in Table 9.4.

Distribution of total price elasticity between prevalence and intensity is not even among the countries. Consumers in Albania, Kosovo and Serbia react more intensively to change in price by reducing the number of cigarettes smoked. In B&H and in Montenegro there is a stronger reaction in terms of quitting smoking. At the same time in North Macedonia, there is even distribution of the two elasticities. It is important to note that value of prevalence intensity for Kosovo equals zero due to not statistically significant causality between the price and prevalence rates.

	ALB	B&H	KSV	MNE	ΝΜΚ	SRB
Prevalence	0.781	0.374	0.212	0.308	0.411	0.609
Intensity	0.329	0.426	0.568	0.286	0.465	0.447
Total	1.113	0.802	0.779	0.595	0.874	1.058

Table 9.5: Income elasticities of cigarette consumption in six SEE countries

Increasing income would result in higher cigarette consumption in all countries. Total income elasticity varies from 0.595 in Montenegro to 1.113 in Albania, indicating that if the income increases by 10 percent the demand for cigarettes would increase between 5.9 and 11.1 percent. This growth would stem from both the growth of smoking prevalence and smoking intensity. More details about income elasticities are presented in Table 9.5.

Distribution of total income elasticity between prevalence and intensity is not even among the countries. Consumers in Kosovo and North Macedonia react more intensively to changes in income by increasing the number of cigarettes smoked. In Albania and in Serbia there is a stronger reaction in smoking initiation. At the same time in B&H and Montenegro, there is even distribution of the two elasticities.

Comparison of the total price and income elasticities shows that in Albania, Kosovo, North Macedonia, and Serbia the values of income elasticities are higher than price elasticities, indicating that in those countries the growth in income could easily erase the impact of increasing prices, especially in Albania. This result indicates that when countries revise excise policies, they should account for the expected growth of income in the country. *Therefore, increasing excises would have an inequality-reducing effect.*

Total income and prices elasticities are significantly different if compared by income groups. Prices elasticities are the highest in low-income households, and the lowest in highincome households (Table 9.6).

		ALB	B&H	KSV	MNE	NMK	SRB
Price	Low	-1.198	-1.411	-0.532	-1.300	-0.446	-1.076
	Middle	0.00	-0.929	-0.630	-1.009	-0.888	-0.631
	High	-0.709	-0.708	0.00	-0.617	-0.278	-0.220
Income	Low	1.728	0.901	0.668	0.514	1.245	1.363
	Middle	1.141	0.782	0.894	0.522	1.124	1.267
	High	0.517	0.735	0.619	0.607	0.583	0.740

Table 9.6: Elasticities in six SEE countries by income group

Such results mean that the population of smokers with the lowest income are the most sensitive to changes in income, while in the majority of countries, they are also the most sensitive group to changes in prices. Therefore, rapid growth in prices would result in the most intensive response in the low-income group in reducing their consumption. On the other hand, high-income households do not react as intensively to changes in prices and income.

Table 9.7: Impact of tax and price increase on consumption (by income group and total)

	ALB ¹	B&H ²	KSV ¹	MNE ³	NMK ²	SRB ¹
Low	-27.1%	-22.1%	-16.3%	-8.7%	-11.6%	-21.6%
Middle	-4.8%	-14.0%	-18.4%	-8.3%	-17.3%	-11.8%
High	-16.4%	-10.3%	1.7%	-5.8%	2.4%	-4.0%
Total	-15.0%	-14.6%	-11.1%	-7.5%	-8.1%	-11.0%

¹ Albania, Kosovo, and Serbia simulate the impact of an excise tax increase which would result in a 25 percent price increase;

² B&H and North Macedonia simulate impact of a 25 percent excise tax increase;

³ Simulation for Montenegro includes both changes in specific and ad valorem excise, resulting in 15.8 percent increase in price

An increase in cigarette prices would result in a decrease in consumption. The results indicate that a price increase would result in consumption decrease in all countries (Table 9.7). The highest impact would be on consumption in the low-income households, while the highincome households would see the lowest change.

			,			
	ALB ¹	B&H ²	KSV ¹	MNE ³	NMK ²	SRB ¹
Low	1.1%	-6.4%	18.9%	9.9%	8.4%	3.5%
Middle	32.1%	3.3%	15.9%	10.5%	1.3%	16.3%
High	15.9%	7.7%	44.4%	13.5%	25.5%	26.7%
Total	17.9%	2.5%	26.2%	11.3%	12.6%	17.4%

Table 9.8: Impact of tax and price increase on government revenues (by income group and total)

¹Albania, Kosovo, and Serbia simulate the impact of an excise tax increase which would result in a 25 percent price increase; ²B&H and North Macedonia simulate impact of a 25 excise tax increase; ³Simulation for Montenegro includes both changes in specific and ad valorem excise, resulting in 15.8 percent increase in price

An increase in cigarette prices would result in an increase in government revenue from tobacco taxation. The results indicate a price increase would result in government revenues in all countries (Table 9.8). The lowest tax burden would be borne by low-income house-

holds, while high-income households would contribute the most to government revenue, confirming the progressivity of increase of excise levels in all the countries.